3.1.85 \(\int \frac {(a+b x^3) \sin (c+d x)}{x^3} \, dx\) [85]

3.1.85.1 Optimal result
3.1.85.2 Mathematica [A] (verified)
3.1.85.3 Rubi [A] (verified)
3.1.85.4 Maple [A] (verified)
3.1.85.5 Fricas [A] (verification not implemented)
3.1.85.6 Sympy [F]
3.1.85.7 Maxima [C] (verification not implemented)
3.1.85.8 Giac [C] (verification not implemented)
3.1.85.9 Mupad [F(-1)]

3.1.85.1 Optimal result

Integrand size = 17, antiderivative size = 70 \[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=-\frac {b \cos (c+d x)}{d}-\frac {a d \cos (c+d x)}{2 x}-\frac {1}{2} a d^2 \operatorname {CosIntegral}(d x) \sin (c)-\frac {a \sin (c+d x)}{2 x^2}-\frac {1}{2} a d^2 \cos (c) \text {Si}(d x) \]

output
-b*cos(d*x+c)/d-1/2*a*d*cos(d*x+c)/x-1/2*a*d^2*cos(c)*Si(d*x)-1/2*a*d^2*Ci 
(d*x)*sin(c)-1/2*a*sin(d*x+c)/x^2
 
3.1.85.2 Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.94 \[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=\frac {1}{2} \left (-\frac {2 b \cos (c+d x)}{d}-\frac {a d \cos (c+d x)}{x}-a d^2 \operatorname {CosIntegral}(d x) \sin (c)-\frac {a \sin (c+d x)}{x^2}-a d^2 \cos (c) \text {Si}(d x)\right ) \]

input
Integrate[((a + b*x^3)*Sin[c + d*x])/x^3,x]
 
output
((-2*b*Cos[c + d*x])/d - (a*d*Cos[c + d*x])/x - a*d^2*CosIntegral[d*x]*Sin 
[c] - (a*Sin[c + d*x])/x^2 - a*d^2*Cos[c]*SinIntegral[d*x])/2
 
3.1.85.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {3820, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx\)

\(\Big \downarrow \) 3820

\(\displaystyle \int \left (\frac {a \sin (c+d x)}{x^3}+b \sin (c+d x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{2} a d^2 \sin (c) \operatorname {CosIntegral}(d x)-\frac {1}{2} a d^2 \cos (c) \text {Si}(d x)-\frac {a \sin (c+d x)}{2 x^2}-\frac {a d \cos (c+d x)}{2 x}-\frac {b \cos (c+d x)}{d}\)

input
Int[((a + b*x^3)*Sin[c + d*x])/x^3,x]
 
output
-((b*Cos[c + d*x])/d) - (a*d*Cos[c + d*x])/(2*x) - (a*d^2*CosIntegral[d*x] 
*Sin[c])/2 - (a*Sin[c + d*x])/(2*x^2) - (a*d^2*Cos[c]*SinIntegral[d*x])/2
 

3.1.85.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3820
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*Sin[(c_.) + (d_.)*(x_ 
)], x_Symbol] :> Int[ExpandIntegrand[Sin[c + d*x], (e*x)^m*(a + b*x^n)^p, x 
], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
 
3.1.85.4 Maple [A] (verified)

Time = 0.20 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.93

method result size
derivativedivides \(d^{2} \left (a \left (-\frac {\sin \left (d x +c \right )}{2 d^{2} x^{2}}-\frac {\cos \left (d x +c \right )}{2 d x}-\frac {\operatorname {Si}\left (d x \right ) \cos \left (c \right )}{2}-\frac {\operatorname {Ci}\left (d x \right ) \sin \left (c \right )}{2}\right )-\frac {b \cos \left (d x +c \right )}{d^{3}}\right )\) \(65\)
default \(d^{2} \left (a \left (-\frac {\sin \left (d x +c \right )}{2 d^{2} x^{2}}-\frac {\cos \left (d x +c \right )}{2 d x}-\frac {\operatorname {Si}\left (d x \right ) \cos \left (c \right )}{2}-\frac {\operatorname {Ci}\left (d x \right ) \sin \left (c \right )}{2}\right )-\frac {b \cos \left (d x +c \right )}{d^{3}}\right )\) \(65\)
risch \(-\frac {i d^{2} \cos \left (c \right ) a \,\operatorname {Ei}_{1}\left (-i d x \right )}{4}+\frac {i d^{2} \cos \left (c \right ) a \,\operatorname {Ei}_{1}\left (i d x \right )}{4}+\frac {d^{2} \sin \left (c \right ) a \,\operatorname {Ei}_{1}\left (-i d x \right )}{4}+\frac {d^{2} \sin \left (c \right ) a \,\operatorname {Ei}_{1}\left (i d x \right )}{4}-\frac {i \left (-2 i a \,d^{6} x^{3}-4 i b \,d^{4} x^{4}\right ) \cos \left (d x +c \right )}{4 d^{5} x^{4}}-\frac {a \sin \left (d x +c \right )}{2 x^{2}}\) \(112\)
meijerg \(\frac {b \sin \left (c \right ) \sin \left (d x \right )}{d}+\frac {b \sqrt {\pi }\, \cos \left (c \right ) \left (\frac {1}{\sqrt {\pi }}-\frac {\cos \left (d x \right )}{\sqrt {\pi }}\right )}{d}+\frac {a \sqrt {\pi }\, \sin \left (c \right ) d^{2} \left (-\frac {4}{\sqrt {\pi }\, x^{2} d^{2}}-\frac {2 \left (2 \gamma -3+2 \ln \left (x \right )+\ln \left (d^{2}\right )\right )}{\sqrt {\pi }}+\frac {-6 d^{2} x^{2}+4}{\sqrt {\pi }\, x^{2} d^{2}}+\frac {4 \gamma }{\sqrt {\pi }}+\frac {4 \ln \left (2\right )}{\sqrt {\pi }}+\frac {4 \ln \left (\frac {d x}{2}\right )}{\sqrt {\pi }}-\frac {4 \cos \left (d x \right )}{\sqrt {\pi }\, d^{2} x^{2}}+\frac {4 \sin \left (d x \right )}{\sqrt {\pi }\, d x}-\frac {4 \,\operatorname {Ci}\left (d x \right )}{\sqrt {\pi }}\right )}{8}+\frac {a \sqrt {\pi }\, \cos \left (c \right ) d^{2} \left (-\frac {4 \cos \left (d x \right )}{d x \sqrt {\pi }}-\frac {4 \sin \left (d x \right )}{d^{2} x^{2} \sqrt {\pi }}-\frac {4 \,\operatorname {Si}\left (d x \right )}{\sqrt {\pi }}\right )}{8}\) \(211\)

input
int((b*x^3+a)*sin(d*x+c)/x^3,x,method=_RETURNVERBOSE)
 
output
d^2*(a*(-1/2*sin(d*x+c)/d^2/x^2-1/2*cos(d*x+c)/d/x-1/2*Si(d*x)*cos(c)-1/2* 
Ci(d*x)*sin(c))-b*cos(d*x+c)/d^3)
 
3.1.85.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.94 \[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=-\frac {a d^{3} x^{2} \operatorname {Ci}\left (d x\right ) \sin \left (c\right ) + a d^{3} x^{2} \cos \left (c\right ) \operatorname {Si}\left (d x\right ) + a d \sin \left (d x + c\right ) + {\left (a d^{2} x + 2 \, b x^{2}\right )} \cos \left (d x + c\right )}{2 \, d x^{2}} \]

input
integrate((b*x^3+a)*sin(d*x+c)/x^3,x, algorithm="fricas")
 
output
-1/2*(a*d^3*x^2*cos_integral(d*x)*sin(c) + a*d^3*x^2*cos(c)*sin_integral(d 
*x) + a*d*sin(d*x + c) + (a*d^2*x + 2*b*x^2)*cos(d*x + c))/(d*x^2)
 
3.1.85.6 Sympy [F]

\[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=\int \frac {\left (a + b x^{3}\right ) \sin {\left (c + d x \right )}}{x^{3}}\, dx \]

input
integrate((b*x**3+a)*sin(d*x+c)/x**3,x)
 
output
Integral((a + b*x**3)*sin(c + d*x)/x**3, x)
 
3.1.85.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.45 (sec) , antiderivative size = 1146, normalized size of antiderivative = 16.37 \[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=\text {Too large to display} \]

input
integrate((b*x^3+a)*sin(d*x+c)/x^3,x, algorithm="maxima")
 
output
1/4*(((I*exp_integral_e(3, I*d*x) - I*exp_integral_e(3, -I*d*x))*cos(c)^3 
+ (I*exp_integral_e(3, I*d*x) - I*exp_integral_e(3, -I*d*x))*cos(c)*sin(c) 
^2 + (exp_integral_e(3, I*d*x) + exp_integral_e(3, -I*d*x))*sin(c)^3 + (I* 
exp_integral_e(3, I*d*x) - I*exp_integral_e(3, -I*d*x))*cos(c) + ((exp_int 
egral_e(3, I*d*x) + exp_integral_e(3, -I*d*x))*cos(c)^2 + exp_integral_e(3 
, I*d*x) + exp_integral_e(3, -I*d*x))*sin(c))*b*c^3/((d*x + c)^2*(cos(c)^2 
 + sin(c)^2)*d^3 - 2*(c*cos(c)^2 + c*sin(c)^2)*(d*x + c)*d^3 + (c^2*cos(c) 
^2 + c^2*sin(c)^2)*d^3) - ((I*exp_integral_e(3, I*d*x) - I*exp_integral_e( 
3, -I*d*x))*cos(c)^3 + (I*exp_integral_e(3, I*d*x) - I*exp_integral_e(3, - 
I*d*x))*cos(c)*sin(c)^2 + (exp_integral_e(3, I*d*x) + exp_integral_e(3, -I 
*d*x))*sin(c)^3 + (I*exp_integral_e(3, I*d*x) - I*exp_integral_e(3, -I*d*x 
))*cos(c) + ((exp_integral_e(3, I*d*x) + exp_integral_e(3, -I*d*x))*cos(c) 
^2 + exp_integral_e(3, I*d*x) + exp_integral_e(3, -I*d*x))*sin(c))*a/(c^2* 
cos(c)^2 + c^2*sin(c)^2 + (d*x + c)^2*(cos(c)^2 + sin(c)^2) - 2*(c*cos(c)^ 
2 + c*sin(c)^2)*(d*x + c)) - (2*((b*cos(c)^2 + b*sin(c)^2)*(d*x + c)^3 - 3 
*(b*c*cos(c)^2 + b*c*sin(c)^2)*(d*x + c)^2 + 3*(b*c^2*cos(c)^2 + b*c^2*sin 
(c)^2)*(d*x + c))*cos(d*x + c)^3 - 3*(b*c^3*(exp_integral_e(4, I*d*x) + ex 
p_integral_e(4, -I*d*x))*cos(c)^3 + b*c^3*(exp_integral_e(4, I*d*x) + exp_ 
integral_e(4, -I*d*x))*cos(c)*sin(c)^2 + b*c^3*(-I*exp_integral_e(4, I*d*x 
) + I*exp_integral_e(4, -I*d*x))*sin(c)^3 + b*c^3*(exp_integral_e(4, I*...
 
3.1.85.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.32 (sec) , antiderivative size = 564, normalized size of antiderivative = 8.06 \[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=\frac {a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (d x\right ) \right ) \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} - a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (-d x\right ) \right ) \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + 2 \, a d^{3} x^{2} \operatorname {Si}\left (d x\right ) \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} - 2 \, a d^{3} x^{2} \Re \left ( \operatorname {Ci}\left (d x\right ) \right ) \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right ) - 2 \, a d^{3} x^{2} \Re \left ( \operatorname {Ci}\left (-d x\right ) \right ) \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right ) - a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (d x\right ) \right ) \tan \left (\frac {1}{2} \, d x\right )^{2} + a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (-d x\right ) \right ) \tan \left (\frac {1}{2} \, d x\right )^{2} - 2 \, a d^{3} x^{2} \operatorname {Si}\left (d x\right ) \tan \left (\frac {1}{2} \, d x\right )^{2} + a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (d x\right ) \right ) \tan \left (\frac {1}{2} \, c\right )^{2} - a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (-d x\right ) \right ) \tan \left (\frac {1}{2} \, c\right )^{2} + 2 \, a d^{3} x^{2} \operatorname {Si}\left (d x\right ) \tan \left (\frac {1}{2} \, c\right )^{2} - 2 \, a d^{3} x^{2} \Re \left ( \operatorname {Ci}\left (d x\right ) \right ) \tan \left (\frac {1}{2} \, c\right ) - 2 \, a d^{3} x^{2} \Re \left ( \operatorname {Ci}\left (-d x\right ) \right ) \tan \left (\frac {1}{2} \, c\right ) - 2 \, a d^{2} x \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} - a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (d x\right ) \right ) + a d^{3} x^{2} \Im \left ( \operatorname {Ci}\left (-d x\right ) \right ) - 2 \, a d^{3} x^{2} \operatorname {Si}\left (d x\right ) - 4 \, b x^{2} \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + 2 \, a d^{2} x \tan \left (\frac {1}{2} \, d x\right )^{2} + 8 \, a d^{2} x \tan \left (\frac {1}{2} \, d x\right ) \tan \left (\frac {1}{2} \, c\right ) + 2 \, a d^{2} x \tan \left (\frac {1}{2} \, c\right )^{2} + 4 \, b x^{2} \tan \left (\frac {1}{2} \, d x\right )^{2} + 16 \, b x^{2} \tan \left (\frac {1}{2} \, d x\right ) \tan \left (\frac {1}{2} \, c\right ) + 4 \, a d \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right ) + 4 \, b x^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + 4 \, a d \tan \left (\frac {1}{2} \, d x\right ) \tan \left (\frac {1}{2} \, c\right )^{2} - 2 \, a d^{2} x - 4 \, b x^{2} - 4 \, a d \tan \left (\frac {1}{2} \, d x\right ) - 4 \, a d \tan \left (\frac {1}{2} \, c\right )}{4 \, {\left (d x^{2} \tan \left (\frac {1}{2} \, d x\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + d x^{2} \tan \left (\frac {1}{2} \, d x\right )^{2} + d x^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + d x^{2}\right )}} \]

input
integrate((b*x^3+a)*sin(d*x+c)/x^3,x, algorithm="giac")
 
output
1/4*(a*d^3*x^2*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 
a*d^3*x^2*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + 2*a* 
d^3*x^2*sin_integral(d*x)*tan(1/2*d*x)^2*tan(1/2*c)^2 - 2*a*d^3*x^2*real_p 
art(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 2*a*d^3*x^2*real_part(c 
os_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) - a*d^3*x^2*imag_part(cos_int 
egral(d*x))*tan(1/2*d*x)^2 + a*d^3*x^2*imag_part(cos_integral(-d*x))*tan(1 
/2*d*x)^2 - 2*a*d^3*x^2*sin_integral(d*x)*tan(1/2*d*x)^2 + a*d^3*x^2*imag_ 
part(cos_integral(d*x))*tan(1/2*c)^2 - a*d^3*x^2*imag_part(cos_integral(-d 
*x))*tan(1/2*c)^2 + 2*a*d^3*x^2*sin_integral(d*x)*tan(1/2*c)^2 - 2*a*d^3*x 
^2*real_part(cos_integral(d*x))*tan(1/2*c) - 2*a*d^3*x^2*real_part(cos_int 
egral(-d*x))*tan(1/2*c) - 2*a*d^2*x*tan(1/2*d*x)^2*tan(1/2*c)^2 - a*d^3*x^ 
2*imag_part(cos_integral(d*x)) + a*d^3*x^2*imag_part(cos_integral(-d*x)) - 
 2*a*d^3*x^2*sin_integral(d*x) - 4*b*x^2*tan(1/2*d*x)^2*tan(1/2*c)^2 + 2*a 
*d^2*x*tan(1/2*d*x)^2 + 8*a*d^2*x*tan(1/2*d*x)*tan(1/2*c) + 2*a*d^2*x*tan( 
1/2*c)^2 + 4*b*x^2*tan(1/2*d*x)^2 + 16*b*x^2*tan(1/2*d*x)*tan(1/2*c) + 4*a 
*d*tan(1/2*d*x)^2*tan(1/2*c) + 4*b*x^2*tan(1/2*c)^2 + 4*a*d*tan(1/2*d*x)*t 
an(1/2*c)^2 - 2*a*d^2*x - 4*b*x^2 - 4*a*d*tan(1/2*d*x) - 4*a*d*tan(1/2*c)) 
/(d*x^2*tan(1/2*d*x)^2*tan(1/2*c)^2 + d*x^2*tan(1/2*d*x)^2 + d*x^2*tan(1/2 
*c)^2 + d*x^2)
 
3.1.85.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b x^3\right ) \sin (c+d x)}{x^3} \, dx=\int \frac {\sin \left (c+d\,x\right )\,\left (b\,x^3+a\right )}{x^3} \,d x \]

input
int((sin(c + d*x)*(a + b*x^3))/x^3,x)
 
output
int((sin(c + d*x)*(a + b*x^3))/x^3, x)